Journal of Mechanical Science and Technology (KSME Int. J.), Vol. 20, No. 5, pp. 591~ 601, 2006 591

Neural Robust Control for Perturbed Crane Systems
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In this paper, we present a new control methodology for perturbed crane systems. Nonlinear

crane systems are transformed to linear models by feedback linearization. An inverse dynamic

equation is applied to compute the system PD control force. The PD control parameters are

selected based on a nominal model and are therefore suboptimal for a perturbed system. To

achieve the desired performance despite model perturbations, we construct a neural network

auxiliary controller to compensate for modeling errors and disturbances. The overall control

input is the sum of the nominal PD control and the neural auxiliary control. The neural network

is iteratively trained with a perturbed system until acceptable performance is attained. We apply

the proposed control scheme to 2- and 3-degree-of-freedom (D.O.F.) crane systems, with

known bounds on the payload mass. The effectiveness of the control approach is numerically

demonstrated through computer simulation experiments.
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1. Introduction

Mechanical cranes are widely used in industry
to move heavy objects. The control goal of the
crane is to place an object in a desired position
within a given time interval and with prescribed
error bounds. Research in crane system modeling
and control has been extensive and has recently
led to the implementation of sophisticated crane
systems. In particular, elaborate control strategies
for several kinds of crane systems have been de-
veloped and successfully implemented in industry.
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Yu et al. used a time-scale separation control
method for an overhead crane system, in which a
linearized model was used to describe the error
dynamics (Yu et al., 1995). Yashida et al. pro-
posed a saturating control approach based on a
guaranteed control cost for a linearized crane
model (Yoshida and Kawabe, 1992). An ap-
proximate crane system modeling was investi-
gated to build exact model information and to
design an adaptive controller by Martindale et al.
(1995). Moustafa and Ebeid developed a non-
linear dynamic model for an overhead crane sys-
tem and applied a linear feedback control based
on a linearized state space equation (Moustafa
and Ebeid, 1988). Lee studied nonlinear model-
ing of an overhead crane system using a new
swing-angle definition and an anti-swing control
methodology for decoupled linearized dynamic
characteristics (Lee, 1998). More advanced re-
searches for nonlinear dynamics of crane systems
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were also addressed more recently. Fantoni et al.
proposed a passivity-based controller for an un-
deractuated crane system using an energy-based
nonlinear control scheme (Fantoni et al., 2000).
Fang et al. investigated an energy-based control
approach for an overhead system, in which addi-
tional nonlinear terms were injected to the con-
troller to increase coupling between the gantry
and the payload position (Fang et al., 2001). The
approach resulted in a significant improvement in
the transient response.

Most available crane control methodologies are
typically based on a linearized system model and
few researchers have addressed the issues of con-
troller robustness or adaptation. Model inaccura-
cies or perturbations are inevitable in practice
and result in unknown perturbations from the
nominal crane model. However, some knowledge
regarding the perturbation is known in practice.
Based on this information, we must design a
robust controller for the crane. However, uncer-
tain or incompletely known perturbations com-
plicate the design and implementation of the con-
troller.

We propose a corrective control design for
perturbed crane systems using a neural network in
addition to nominal PID control. First, PD con-
trol is derived for nominal plant dynamics using
inverse dynamics and feedback linearization (Hunt
and Meyer, 1983). The PD control parameter
selection is designed for the nominal plant model
and may perform poorly for the perturbed system.
Next, we design a neural network auxiliary con-
troller to correct errors due to model pertur-
bations. The control input is given by the sum of
the neural control and the nominal PD control.
The neural network is iteratively trained with
perturbed models of the crane system, in which
system parameters are arbitrarily varied within
their known bounds. In this paper, we assume a
payload mass change as system perturbation. This
assumption is realistic since the load mass for a
crane is not known a priori. For evaluation of the
proposed control scheme, 2- and 3-D.O.F. crane
systems are simulated and the control perform-
ance is compared to the nominal control for per-
turbed systems with no correction for perturba-

tion.

The remainder of this paper is organized as
follows. In Section II, the crane controller design
using feedback linearization and a neural net-
work is presented. 2- and 3-D.O.F. crane models
are introduced and the proposed control scheme
is applied to them in Section III and IV, respec-
tively. Several simulation results are provided and
discussed in Section V. Finally, our conclusion is
given in Section VI.

2. Controller Design
of Crane Systems

In this Section, we derive a controller design
based on feedback linearization for crane systems.
We assume that the equation of motion for the
crane is

M(q)4+V(a, ¢)¢+Gla)=f (1)

where MER™" in the inertia matrix, VER"*" is
the centripetal-Coriolis matrix, GER", is a grav-
ity term, fER” is an input vector, and gER" is
a state vector. For the Lagrangian dynamics of
Eq. (1) (Slotine and Li, 1991), we simple apply
a feedback linear transformation to the system
equation to compute the input vector. The inverse
dynamics provide an expression for the input
vector

F=M(q)u+Viq, ¢)¢+G(q) (2)

where a velocity state vector ¢ is assumed to be
measured by sensor systems in practice. In Eq.
(2), u is a new control input vector which leads
to the linear model §=wu. We select the PD
control structure

u=Kpe+Kaqe (3)

where K, is the proportional control matrix and
Ky is the derivative control matrix, e is the error
vector and ¢ is its derivate vector. Assuming a
constant reference vector, its derivate vector is
zero. Substituting the control # of Eq. (3) to the
linear dynamic equation §=1u gives the nominal
closed-loop dynamics

Gd+Kag+Kpg—Kpr=0 (4)
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where 7 is the reference vector. We select the
control matrices K, and Ky to assign the eigen-
values for Eq. (4) that provide the desired time
response. Fig. 1 depicts the feedback linearization
scheme for crane systems.

2.1 System perturbation

The input vector in Eq. (2) is derived under
assumption that a system dynamic model in Eq.
(1) is exact. In practice, however, this assumption
is rarely valid due to modeling errors, environ-
mental changes, etc. A controller constructed using
a nominal model can therefore perform poorly in
practice and compensation for model perturba-
tions is needed. Adding a corrective control input
vector Az to Eq. (2), we express the input to the
perturbed system as

F*=M(q) (u+Au) +V(q, ¢)¢+G(g) (5)

Although perturbations are generally unknown
prior to implementation, some information such
as upper and lower bounds on parameter values
is typically available. In this paper, we assume
known perturbation bounds and use them to de-
sign the corrective control A through soft com-
putation. Fig. 2 illustrates our neural network
perturbation control for crane systems. The total
control input is the sum of the nominal input and
the corrective input from the neural network.

Fig. 3 A neural network controller

2.2 Neural network control

We use a neural network for the calculation of
the corrective control input Az. The neural net-
work is iteratively trained to minimize a specifi-
ed objective function under a perturbed system
model in which perturbation value is changed
within known bound for each training period.
The proposed neural network is composed of a
single-layer perceptron, shown in Fig. 3.

In Fig. 3, input patterns are realizations of the
system error vector and output signals are the
corrective input, which is expressed as

Auj=§0<i:Z; Wjiei+bj>, =1 n (6)

where @ is an activation function, and w;; and b;
denote the weight and bias, respectively. Network
training is selecting optimal values of weights and
biases using an appropriate optimization method
given an objective function. We define the objec-
tive function as
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and adjust the weights and biases using the gra-
dient descent algorithm

w4 ) =wa(B) =14 ()
i+ 1) = by () =121 ©)

where £ denotes the discrete iteration number and
i, 7=1, --, n. By using the chain rule to calculate
partial derivatives in the right side of Eq. (8) and
Eq. (9), we obtain

witkt ) =wi () +9es (9L ) e (10)

by (+ 1) =b, (k) +7e,( 9L (11)

where we linearly approximate the system Jaco-
bian, for simplicity, by a change in the system
output and input (Guez et al., 1988). Finally the
adjustment rules of the weights and biases are
given by

wii (k1) =w;; (k) ‘|‘77€j< Z]<

bi(k+1)=0b;(k) +77€j< ZJE

3. 2-D.O.F. Crane System

We first consider a standard 2-D.O.F. crane
system which is composed with both translation
and rotational portions. The system model is
shown in Fig. 4.

The motion equations of this system are

(me+mp) ¥+ bx+mpL & cos(8)
—mpL 6?sin(8) =f

(me+ mp) & + b +m»L 8 cos (6)
—mpL 6?*sin(9) =f

(14)

(15)

where m. is a crane mass, 7, is a payload mass,
L is a loop length, g is a gravity constant, f is
a force scalar applied to a crane system, and the
coordinates x and @ are the crab position and
angular position of the line, respectively. In prac-
tice, the crane mass is essentially constant, but a

i
I
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|

Fig. 4 A 2-D.O.F. crane system

payload mass changes within a limited range as
the load of the crane changes.

3.1 Controller design
Based on Eq. (3), PD control for this system is

uZKp[ex]-}—Kd{x} (16)
€o 17

where ex=x — 7x in which 7y is a reference posi-
tion and e,=4§¢ due to a zero reference angle.
We simply define diagonal parameter matrices as
Ko=diag (kp,, kp,) and Ka=diag (ka,, ka,) . By
applying PD control, an input scalar formed in an
inverse dynamic equation is expressed as

f=(m¢+mp) ux+msL cos(0) us
+bx—mpL 62 sin(6)

where ukapxex+kdxx and ua=kp5(9+kdx¢9'.
The applied force including the corrective control

(17)

terms is

F*=(me+mp) (ux+Aux)
+mpL cos (8) (ue+Aus) (18)
+bx—mpL §*sin(6)

where Aux and Auy are computed by the neural
network shown in Fig. 3 as stated in Section II.
For this case, the two input signals of the network
are ex and e, and the output signals are Awu, and

Aua.
4. 3-D.O.F. Crane System
In this section, we consider a 3-D.O.F. under-

actuated overhead crane with two external in-
puts (Fang et al., 2003). Fig. 5 depicts the system
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model and its dynamic motion equation is

X X 0 Ix
y y 0 |
M g TV é + mpgLsin(0) | | 0 (19)
¢ ¢ 0 0
In Eq. (19), the inertia matrix M is
mp+mr+m 0 mpL cos (0)sin(p) mpL sin(8) cos (@)
M 0 mp+ me mpL cos (0) cos (@) —mypL sin(0)sin(g) (20)
mpL sin(0)sin(p) mpL cos () cos(p) mpl*+1 0
mpsin(@) cos(¢p) —mpLl sin(0)sin(gp) 0 mpL?sin®(0) +1

and the centripetal-Coriolis matrix V is given by

00 —mpL sin(d)sin (@) O+myL cos () cos(4) d myL cos(6) cos (¢) §—mypL sin(6)sin(¢) ¢

V_00 0

00 mpL? sin(8) cos (6) ¢

where mi. is the cart mass, the input forces fx and
fy acted on the cart and the rail. The system
coordinates are : x, the position along x-axis, and
y, the position along the y-axis. 6 is a payload
angle with respect to the vertical, and @ is the
projection of the payload angle along the x-axis.
Other notations in Egs. (19) ~ (21) are identical
to those of the 2-D.O.F. crane system model in
Eq. (14) and Eq. (15). We make several assump-
tions regarding the 3-D.O.F. crane. First, the pay-
load and cart are linked by a rigid and massless
connector. Second, the state variables and their
derivates are measured. Third, the cart mass and
the rod length are known exactly. Fourth, friction

|
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é

Fig. 5 A 3-D.O.F. crane system

{00 —mpL sin(0) cos (¢) §—mpL cos (0)sin($) § —myL cos (6)sin(g) —myL sin(6) cos (¢) ¢

—mpl2sin(6) cos (6) ¢ (21)

mpL?sin(8)sin(6) 6

at the ball joint which links the payload to the
cart is ignored, and this joint does not rotate
relative to the link rod. Finally, a bound of 4 is
—r<0<m.

4.1 Controller design

As in Eq. (16), a PD control vector with di-
agonal parameter matrices is selected and the
control input is

Usx ko, 0 0 0 ][ex
ue| || O R, 00 e
) 0 0 %kp, 0 || eo
Uo 0 0 0 kplles
ki, 0 0 0 [%
0 kay 0 0 |l¥
0 0 ka 0|6
0 0 0 kglld

+

where ex=x—7x, ey=y— 7y, €e=0, and es=¢
for zero reference angles. The input forces applied
to the crane are computed using the control vector
of Eq. (19) as

Fo= (mp+mr+me) ux
+mpL cos (0)sin(¢) us (23)
+mpL sin(0) cos (@) us

= (mp+mc> Uy
+mpL cos (6) cos () us (24)
—mpL sin(0) cos (@) us
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The perturbation control inputs are

fx= (mp+mr+mc> (ux+Aux)

+mpL cos(0)sin(@) (ue+Aus)  (25)

+mpL sin(8) cos (@) (us+Ausy)
Fy=(mp+me) (uy+Auy)

+mpL cos (0) cos (@) (ue+Aus)  (26)

—mpL sin(6) cos (@) (us+Auy)

where the perturbation control inputs are com-
puted by a neural network whose inputs are ey,
ey, @p, and ey, and outputs are Aux, Auy, Ao,
and Awuy.

5. Simulation Examples and Results

We simulated the two crane systems presented
in Section II and III with nominal PD control
and corrective neural network control using
MATLAB®. Three simulation examples for each
crane system were performed : First, the nominal
systems were simulated applying PD controls
whose parameters are selected from several ex-
periments using nominal models. Second, we used
PD control with crane models in which the
payload mass is arbitrarily changed resulting in
unacceptable control performance. Finally, we
apply neural network correction together with
nominal PD control to the cranes and compare
the results to nominal control. Example I is a
simulation example for the 2-D.O.F. crane system
and Example II is for a 3-D.O.F. system.

Example T-1 : In this example, a nominal model
of the 2-D.O.F. crane with PD control is sim-
ulated. Crane system parameter values are m,=

160[kg], m.=23[kg], L=2.5[m], and I=1.5
[kg-m?*]. We use a control time interval of [0, 20]
sec and a reference (desired) position 7,=10[m].
Thus, the control goal is that the crane reaches
the reference position within this time interval.
Iterative simulations showed that the best control
performance was achieved with the PD control
parameter values kp,=1.23, kp,=0.51, kq,=2.18,
and kq4,=0.28. Fig. 6 shows the crane position
and angle trajectories and the control input
trajectory. The position response has a small peak
overshoot around 3.5 sec, but settles at the desired
position within the [0, 20] sec interval and the
control performance is satisfied. In the loop angle
response, there is an undershoot as well as an
overshoot in the transient response and the system
settles after about 6.2 sec. Thus, the performance
of the control system is satisfactory and the con-
trol parameters are suitable for the nominal sys-
tem.

Example 1-2 : We simulated the perturbed system
with PD control used in Example I-1. As system
perturbation, a payload mass of 5,000[kg] is add-
ed, i.e. mp=>5,160[kg], which is the maximum
allowed for this system. A simulation scenario
identical to Example I-1 is used. Fig. 7 illustrates
the system responses and input. As expected, we
observe from the results that the performances is
unsatisfactory, and the position and angle dy-
namics do not settle within the speicified time
interval. Moreover, the control input magnitude is
on the average larger than that of Example I-1.
Consequently, the control parameters which were
selected for the nominal model are inappropriate
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Fig. 6 System trajectories and control input (Example I-1)
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for the perturbed system.

Example 1-3 : In this Example, a neural network
is constructed as described in Section II and the
perturbed system with a neural control along with
a nominal PD control is simulated under same
simulation environment. The initial values of the
weights and biases were randomly selected via a
uniform distribution in [ —0.5, 0.5] and a bipolar
sigmoid activation function is used. The network
is iteratively trained with the perturbed system in
which the payload mass is changed within the
range [160, 5,160] kg for each training period.
The trajectories of the crane position and loop
angle as well as control inputs for PD control

and the neural control are plotted in Fig. 8. The
results demonstrate that the control performance
is improved and the position and angle dynamics
settle to the desired levels within the prescribed
time interval. Regarding the control inputs, the
magnitude of the PD control term first increases
to a large positive value around the peak time, but
the neural control has a relatively small negative
value. We interpret this as corrective action by the
neural network to improve the control perform-
ance.

Example 11-1 : From this example, the 3-D.O.F.

crane system is simulated as in Example 1. The
system parameter values are the same as the 2-
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Fig. 7 System trajectories and control input (Example 1-2)
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Fig. 8 System trajectories and control inputs (Example 1-3)
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D.O.F. system and the rail mass is n2,=190[kg].
The reference positions are 7,=10[m] and 7»,=
3[m]. The PD control parameter matrices are
chosen as K,=diag{0.1, 0.25, 0.5, 0.35} and
Ka=diag{0.35, 0.5, 0.8, 0.73} for the nominal
system. Fig. 9 shows the position and angle re-
sponses for the nominal system with PD control.
The two position responses have about 20[%]
and 17[%] overshoot in the transient period, re-
spectively, but both reach the reference level in
about 30 sec. The two angle responses have ac-
ceptable transient responses and converge to the
steady-state region.

Example 11-2 : The crane model is simulated with
a perturbed payload mass of m,=5,160[kg] and
with nominal PD control. The other parameter
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values and PI control values are set as Example
II-1. Simulation results, shown in Fig. 10, indi-
cate unsatisfactory performance. Clearly, the con-
trol parameter values must be retuned to meet the
design specifications.

Example 11-3 : The perturbed system is composed
of neural network control together with a nomi-
nal PD control. The neural network is designed
and trained similarly to and with the same set-
tings as for the 2-D.O.F. crane. The simulation
results of Fig. 11 illustrate the crane positions
and angles in which the control performances are
evidently improved. The overshoots and the set-
tling times for the responses are considerably
diminished and the oscillations and the magni-
tudes are correspondingly reduced in the angle
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Fig. 9 System trajectories and control inputs (Example II-1)
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dynamics. Time histories of control input dy-
namics are plotted in Fig. 12. We finally conclude
from the simulation results that the corrective
neural network control significantly improves the
control performance for the perturbed system.

6. Conclusions

We propose a new robust control for perturbed
crane systems using a neural network. We obtain
PD control for the nominal crane model, then
design a neural network to compensate for model
perturbations. The control input to the perturb-
ed system is composed of a PD control and a
corrective neural control input. 2- and 3-D.O.F
crane systems in which the payload mass was
perturbed were simulated with the proposed con-
trol and numerically analyzed. From the analysis,

we conclude that the corrective control compo-
nent is required for the perturbed systems to meet
design specifications. With corrective control the
transient performance of the cranes was consi-
derably improved. The overshoots for the crane
positions and the payload angles responses were
reduced and their settling times were significantly
diminished. In future work, we will consider more
general perturbations in the crane model and de-
velop neural control correspondingly. We will
also examine the stability of the perturbed control
system using Lypunov stability theory (Khalil,
1996) .
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